Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurovirol ; 25(1): 57-71, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414048

RESUMO

Chronic pain in persons living with HIV (PLWH) may be related to alterations in endogenous pain modulatory processes (e.g., high facilitation and low inhibition of nociception) that promote exaggerated pain responses, known as hyperalgesia, and central nervous system (CNS) sensitization. This observational study examined differences in endogenous pain modulatory processes between 59 PLWH with chronic pain, 51 PLWH without chronic pain, and 50 controls without HIV or chronic pain. Quantitative sensory testing for temporal summation (TS) of mechanical and heat pain as well as conditioned pain modulation (CPM) were used to assess endogenous pain facilitatory and inhibitory processes, respectively. Associations among TS, CPM, and self-reported clinical pain severity were also examined in PLWH with chronic pain. Findings demonstrated significantly greater TS of mechanical and heat pain for PLWH with chronic pain compared to PLWH without chronic pain and controls. CPM effects were present in controls, but not in either PLWH with or without chronic pain. Among PLWH with chronic pain, greater TS of mechanical pain was significantly associated with greater average clinical pain severity. Results of this study suggest that enhanced facilitation and diminished inhibition characterizes the pronociceptive endogenous pain modulatory balance of persons living with HIV and chronic pain.


Assuntos
Dor Crônica/fisiopatologia , Infecções por HIV/fisiopatologia , Hiperalgesia/fisiopatologia , Inibição Pré-Pulso , Inibição Reativa , Adulto , Idoso , Estudos de Casos e Controles , Dor Crônica/diagnóstico , Dor Crônica/virologia , Feminino , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/virologia , Masculino , Pessoa de Meia-Idade , Medição da Dor , Somação de Potenciais Pós-Sinápticos
2.
Behav Brain Res ; 319: 110-123, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865919

RESUMO

Chronic stress triggers a variety of physical and mental health problems, and how individuals cope with stress influences risk for emotional disorders. To investigate molecular mechanisms underlying distinct stress coping styles, we utilized rats that were selectively-bred for differences in emotionality and stress reactivity. We show that high novelty responding (HR) rats readily bury a shock probe in the defensive burying test, a measure of proactive stress coping behavior, while low novelty responding (LR) rats exhibit enhanced immobility, a measure of reactive coping. Shock exposure in the defensive burying test elicited greater activation of HR rats' caudal dorsal raphe serotonergic cells compared to LRs, but lead to more pronounced activation throughout LRs' amygdala (lateral, basolateral, central, and basomedial nuclei) compared to HRs. RNA-sequencing revealed 271 mRNA transcripts and 33 microRNA species that were differentially expressed in HR/LR raphe and amygdala. We mapped potential microRNA-mRNA networks by correlating and clustering mRNA and microRNA expression and identified networks that differed in either the HR/LR dorsal raphe or amygdala. A dorsal raphe network linked three microRNAs which were down-regulated in LRs (miR-206-3p, miR-3559-5p, and miR-378a-3p) to repression of genes related to microglia and immune response (Cd74, Cyth4, Nckap1l, and Rac2), the genes themselves were up-regulated in LR dorsal raphe. In the amygdala, another network linked miR-124-5p, miR-146a-5p, miR-3068-3p, miR-380-5p, miR-539-3p, and miR-7a-1-3p with repression of chromatin remodeling-related genes (Cenpk, Cenpq, Itgb3bp, and Mis18a). Overall this work highlights potential drivers of gene-networks and downstream molecular pathways within the raphe and amygdala that contribute to individual differences in stress coping styles and stress vulnerabilities.


Assuntos
Tonsila do Cerebelo/metabolismo , Núcleo Dorsal da Rafe/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Estresse Psicológico/patologia , Adaptação Psicológica/fisiologia , Animais , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Comportamento Exploratório , Regulação da Expressão Gênica/fisiologia , Ontologia Genética , Redes Reguladoras de Genes/fisiologia , Resposta de Imobilidade Tônica/fisiologia , Masculino , MicroRNAs/genética , Nociceptividade/fisiologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...